a2 United States Patent

US009053292B2

US 9,053,292 B2
Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

Abdallah
(54) PROCESSOR EXECUTING SUPER
INSTRUCTION MATRIX WITH REGISTER
FILE CONFIGURABLE FOR SINGLE OR
MULTIPLE THREADS OPERATIONS
(71) Applicant: Soft Machines, Inc., Santa Clara, CA
(US)

(72) Inventor: Mohammad A. Abdallah, San Jose, CA
(US)

(73) Assignee: Soft Machines, Inc., Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 13/691,609

(22) Filed: Now. 30, 2012

(65) Prior Publication Data
US 2013/0091340 A1 Apr. 11, 2013

Related U.S. Application Data

(63) Continuation of application No. 12/296,919, filed as
application No. PCT/US2007/066536 on Apr. 12,
2007, now Pat. No. 8,327,115.

(60) Provisional application No. 60/792,219, filed on Apr.
14, 2006, provisional application No. 60/791,782,
filed on Apr. 12, 2006, provisional application No.
60/791,649, filed on Apr. 12, 2006.

(51) Imt.ClL
GO6F 9/38 (2006.01)

GO6F 15/80 (2006.01)
(Continued)

(52) US.CL

CPC GO6F 15/8007 (2013.01); GO6F 7/483
(2013.01); GOGF 7/5318 (2013.01);
(Continued)

(58) Field of Classification Search
None
See application file for complete search history.

Register File 420\ Register File

[
Rl N ¥ w7 o ¥ ¥ ¥ ap g T AL L
o o oo el [B i

é 11} L2 (23 § (X3 L2 (2]

3] T] © T —
OB S Rk e b iy | B [T T g
410~ - 4 f_ I édgnp_lez || Complex | | Complex 5 Complex | | Complex - | Complex
atpm =4S OO unit_) Unit ||| Uni Unit Unit

=1 (72 7 2 | N T 2 % 20

|
301 300

(56) References Cited
U.S. PATENT DOCUMENTS

4,835,680 A
4,943,909 A

5/1989 Hogg et al.
7/1990 Huang

(Continued)
FOREIGN PATENT DOCUMENTS

WO 2004/114128 A2 12/2004

OTHER PUBLICATIONS

Nagarajan et al., “A Design Space Evaluation of Grid Processor
Architectures”, 34th ACM/IEEE International Symposium,
Piscataway, NJ, Dec. 1-5, 2001, pp. 40-51.

(Continued)

Primary Examiner — Kenneth Kim
(74) Attorney, Agent, or Firm — Cooley LLP

(57) ABSTRACT

A processor has a register file configurable for different
execution modes. In one mode the multiple register segments
form a single register file where each register segment stores
a Multiple Instructions Multiple Data (MIMD) super instruc-
tion matrix issuing four simultaneous instruction matrices
where each individual instruction within each of the four
simultaneous instruction matrices is a scalar or Single
Instruction Multiple Data (SIMD). Another execution mode
has the multiple register segments forming individual inde-
pendent register tiles with individual register state to support
simultaneous processing of separate threads, where each
instruction matrix is associated with a separate thread and a
separate register file segment. Another execution mode has
the multiple register segments forming a single thread register
file, where register segments are duplicated in multiple seg-
ments of the register file to store the results of simultaneously
executed non-dependent instruction matrices that are
dynamically issued from a single thread instruction sequence.

17 Claims, 25 Drawing Sheets

Register File Register File
Matrix operands Matrix oerands
Buffer Buffer

P O I S A AP O N A A A S 33 33 8F 3 03%
E Complex | | Complex | | Comple é ; || Comple | |Comple | | Comple
a Unit Unit x Unit Z | xUnit | xUnit || x Unit
§ LR vy (2] 5| V¢ (2] (2]
B T] B]
IR0t thby 3L] | S [0 0% vt $4 e
E Complex | | Complex | | Complex E | Complex | | Complex | { Complex
% Unit Unit Unit ‘% Unit Unit Unit
El) N X 2 7 2 T 2 B N T 7 W 4%

\
302 304

US 9,053,292 B2

Page 2
(51) Int.ClL 7,171,535 B2 1/2007 Naoi
GO6F 7/533 (2006.01) 7,257,695 B2* 82007 Jiangetal. 712/22
GOGF 9/30 (2006.01) ;ﬁgz;‘; E; * ;gggg ge?ﬁanek otal 7117100
gggﬁ ;;;(?3 888288 7:877:582 B2* 12011 Glslcl:h:tind etal. ... 712/226
GOGF 7/544 2006.01 2006/0095720 Al 5/2006 Biles et al.
(01) 2007/0074005 Al 3/2007 Abernathy et al.
(52) US.ClL 2009/0031104 Al 1/2009 Vorbach et al.
CPC GO6F7/5338 (2013.01); GO6F 7/5443
(2013.01); GO6F 9/30109 (2013.01); GO6F OTHER PUBLICATIONS
9/3012 (2013.01); GO6F 9/30123 (2013.01);
GOG6F 9/3016 (2013.01); GOGF 9/30181 Santos et al., “The 2D-VLIW Architecture”, Mar. 2006, (2006), 13
(2013.01); GOGF 9/3824 (2013.01); GO6F pes.
9/3828 (2013.01); GOGF 9/3838 (2013.01); Extended European Search Report issued to EP Patent Application
GO6F 9/3851 (2013.01); GO6F 9/3853 No. 07811845.2, Nov. 2, 2009, 7 pes.
(2013.01); GO6F 9/3867 (2013.01); GO6F European Search Report issued to EP Application No. EP 12150513,
9/3885 (2013.01); GOGF 9/3891 (2013.01) Jun. 19, 2012, 8 pes.
. International Search Report issued to International Patent Applica-
(56) References Cited

U.S. PATENT DOCUMENTS

5,524,090 A 6/1996 Iwamura
6,954,846 B2* 10/2005 Leibholzetal. 712/43

tion No. PCT/US2007/066536, Jul. 30, 2008, 3 pgs.
Kozyrakis et al.,, “A New Direction for Computer Architecture
Research”, IEEE, Nov. 1998, pp. 24-32, vol. 31, Issue 11.

* cited by examiner

US 9,053,292 B2

Sheet 1 of 25

Jun. 9, 2015

U.S. Patent

it

t

L Old

11

|

N 30iS |eas N 30IS |eLag
013018 L10IS
jojjeled |ojjeded
if| M
1-N 10IS |euios 1-N 10IS |euiog
03018 | 1018
j9)jeled |ojjeded

i

)

t

f

N 30IS [euas N30IS [eres
meeee- 1-N oIS NioIS
Iojjeled ol jeJed
F4 F$
I"N3IOIS [BU3S | | 1-N3OIS [eHaS
B I-N10IS Nlois
|ajjeded |9jjeied

"

t

1

t

1 30IS [elivg

1 J0IS [BLaS | J0IG [BLBS
03018 L3018
¢0l
_w:NLN& _0__N&N&
L0l 030§ eudS 03018 [euag
~_ 7 030IS 130IS
_0__N.~m& _Q__N.uN&

| 10IS [eLag
—=---- 1-N OIS Nlois
|ojjeded |oljeied
1 |
030]S leuas 030|S [enag
—----- 1-N10IS N10IS
|olieied |9ljeded

US 9,053,292 B2

Sheet 2 of 25

Jun. 9, 2015

U.S. Patent

d¢ 9ld

NY © Zepoodo ajdwig

21607 1, 8poado sidwig

NV : zapoodo sidwig

21607 © | apoodo sjdwig

DV : 8poado uonelsdo xsjdwon

Q1 8poodQ uonelsdo xa|dwon

+d : 8poad uoneiado xaydwion

TN - 8poad(uoiielado xajdiuon

¥S ¢S | zS/msea | 1s/useq pS ¢S | zsmsea | 1s/mseq bS ¢S | zs/msea | 19/1seq
¥S ¢S | zs/msea | 1s/mseq pS eS| zs/msea | 1s/msaq bS ¢s | zs/msea | 1g/msaq
V¢ 9Ol
vl
A4 012 802
QN £H'0d ans =81 d
st " T~ G'LLY PPY =LY
nv/|||| nv SN od'/8 ANV =LY
o1bo 21607 0d'sLY‘eLY ooBInN =02y
Eas . - \\\\\korm@mmoumm
N H - G4.64 AQvd4d =24
sk ey‘Ly INN =0Y
di dd Jwaw peo] =9y
Loz — LN > .- _
002
902 $0Z 202

U.S. Patent Jun. 9, 2015 Sheet 3 of 25 US 9,053,292 B2

FIG. 3

3([)0

ALU

gic
ALY

US 9,053,292 B2

Sheet 4 of 25

Jun. 9, 2015

U.S. Patent

Vv Old
00¢ L0C
(YY)
,m Hne - E1--a
nin n nn = nn wn _ =
xajdwo) | | xaidwoy | | xaydwoy ||| X xa|dwo) | | xajdwon —>< = =-=-0l¥
2 2|
; 5 “ 5 | T 80r
S ; 44 24 24 1S
wn o (| own (R Y TR T TR T[T 907
xe|dwog | | xaidwog | | xaidwo || | @ XBIGW0D | | xardwo) xe[dwo3 [T ~@ T~ ~¥O¥
A i T~~zov
Jayng Jayng
spuelado xujep spueiado xuep
~ e

9|4 Je)siboy /omv | end1a1si60y

US 9,053,292 B2

Sheet 5 of 25

Jun. 9, 2015

U.S. Patent

(pJuod) V¥ 9|4

y0¢€

N nun N
xa|dwo) | | xeidwon | | xsjdwon

/

Hun x Hun X Hun x
ajdwog | | adwon | | ojdwon

loyng
spuelado xujep

3|4 1918169y

Jagng uononusuj Xuiepn

2o¢e
_

nn

xa|dwo)

nun N
xajdwo) | | xajdwo)

/

,1,

i,

n
xajdwo)

un
xa|dwo)

layng
spueiado xujep

3|14 18)sibay

1ayng uononsu| Xuep

U.S. Patent Jun. 9, 2015 Sheet 6 of 25 US 9,053,292 B2

T
NI

i write ports from other sections
JLihl

Y] 440
it
T
nn;:
T

sectioned
write ports 1)

430

'/

Matrix
Executioh

Units

W

FIG. 4B

US 9,053,292 B2

Sheet 7 of 25

Jun. 9, 2015

U.S. Patent

g Ol
12151634 QNIS QNIN-UON 13151034 4DIDIS QN IIN-UON

———[PNPIAIPUI O 131513 QINIIS — |ONPIAIPUIIO 133S1DaJ ID[DIS -

T dwiw up fo uoi123s auQ dwIw up fo uoi13oas m:%/
v @ 0 0d
oY @ 0 00

v @ 0 0d

@ 0 0d

US 9,053,292 B2

Sheet 8 of 25

Jun. 9, 2015

U.S. Patent

L Old
Gd
145 €d
145 cd
A T s — X< IR .
S801N0g $80IN03g
g XITel PR
9 9Ol4

US 9,053,292 B2

Sheet 9 of 25

Jun. 9, 2015

U.S. Patent

8 Ol

N1v:zepoodo sjdwig

21607 19p02do ajdwig

Ny:zepoodo sduwig

21607: | 8poodo sjdwig

IVN:epeodQ uonesado xajdwon

@1 : epoadp uonessdo xsjdwon

+d4 : 8pood() uonelado xadwon

TN:epoadQ uoneiado xaidwio))

vS

€S

¢s/aised

1S/seq

vS

€S

¢s/ased

1S/seq

¥S

£S

¢siasea

LSnised

¥S

€S

¢sieisea

LS/11sed

vS

€S

£srasea

1S/118eQ

¥S

€S

ésiasea

LS/seq

U.S. Patent Jun. 9, 2015 Sheet 10 of 25 US 9,053,292 B2

’’’’’’’’

900

E><xecuticonm
UIUnrniitss T

T F ¥ <§, -

902

FIG. 9

US 9,053,292 B2

Sheet 11 of 25

Jun. 9, 2015

U.S. Patent

IndinQ
101210Y/1BYIYS

mano
slappyalidiyiniy

180 9} -
uioog

183 9}
yioog

180 91~
ujoog

V0l Ol

c001

1°D 9}~
ujoog

US 9,053,292 B2

Sheet 12 of 25

Jun. 9, 2015

U.S. Patent

adNVv L1
d0 0}
d0OX L0

1BpPPY 00
11D uoiouny 01607

14302%

dol Old

U.S. Patent Jun. 9, 2015 Sheet 13 of 25 US 9,053,292 B2

1100
[AdderICSA | | Adder/CSA |
1102A — 1 Adder/CSA |
| Adder/CSA —|—1 104A
]
; Digit Final adder
[(TAdderCSA | [AdderiCSA |
[Time = T,
1028 — |
| Adder/CSA
Adder/iCSA }_1 104B
[
l Digit Final adder r
[T"AdderiCSA | [AdderiCSA |
l Time = To+d
[Adder/CSA |
[Adder/CSA —1104C
]
lnigu Final adder I
T
1102C i Time = To+ 2d

Figure 11

US 9,053,292 B2

Sheet 14 of 25

Jun. 9, 2015

U.S. Patent

¢l Ol

L ¥NS

uwe|s a1e1g

lUlwg|a 91els

JUwsle 9).I1S

uwaje 8)1.1g

JuL9jo ajelg

Juwale a1e1g

uwsle sjeg

Sheet 15 of 25

Jun. 93 2015

U.S. Patent

(Uy
cl

._OCHC
Ol

Mm»w

A O< r< N/n\.m/n‘v

Nmu%ﬁf —.< N<m<v

g . (Oy
og . (Oy
@m —

‘v

N< ®<v

'v v v)

mm 5

US 9,053,292 B2

Sheet 16 of 25

Jun. 9, 2015

U.S. Patent

vl Old

. % ‘"W v) + VWV . (

‘g . (°v

'v W)+ °VvY . (°g 'g)

'9.(°v 'v)+ v, (%9)

°g

g=2=))

US 9,053,292 B2

Sheet 17 of 25

Jun. 9, 2015

U.S. Patent

FIG. 15
(Prior Art)

US 9,053,292 B2

Sheet 18 of 25

Jun. 9, 2015

U.S. Patent

91 Ol

18]|diyn|y pspoou3 yjoog

\'4

+
a4 H
, ¢y |
3
‘ A
A A .w .w
_ 26
4
‘ >N”m « W
> 10}08)3s dd
H Zy _
1 LT 40091
_ 4] |
4
| z9
A
» 10109|8S dd
puesl N, (Z-'Z°1-1°0)

V009!

U.S. Patent Jun. 9, 2015 Sheet 19 of 25 US 9,053,292 B2

d @Ng54

\\ e S

>®<
\9

@Mz

e

K

e

SIS

R

o O(ﬁ\ M14

S P

O Oty (% M, 0w (i 1, O

T T T / — e

(s Sﬁ/mao @j Mg (%j NE@ @4 0)

/__// S o

FIG. 17

US 9,053,292 B2

Sheet 20 of 25

Jun. 9, 2015

U.S. Patent

i)
N N N | B
3 A
| iy ~
A A % %
) ¢y |
gl 'Ol » (. *
oL
+ Z:S |
, ---- P 1010315 dd 10pa[ES dg le— Puedudainiy
1 4--7" : - o8 n_n: papooug yjooq
s R s | .ﬁ |
\\\ A A4 \\\ % »
‘A RS 44 | Jeldn L (2-'2'1-'1'0)
A T 1
S 2 |
d A
s |
JOREIES pues||diyniy
195 dd [10109198 44 &Ilvmnou:m noog
4% '
\\ ¥ . % * \\\ 1
.“w | AT H sl dnAlL . (2-2°1-'1'0)
T \ ’
' / -7
! ¢S | .-
lodyiny- ! L S
> v10p9s dd |

papoou3 yjoog

f

US 9,053,292 B2

Sheet 21 of 25

Jun. 9, 2015

U.S. Patent

t

6l Old

L

A

N
[]

L L

\# .

<

N

L
_Ir Juuis|e ajels

!

K

Juwsje a)e)s

i

L ¥NS |

PNaaa

Juwole s)e)s

!

1 \ t
ornsy |LENS

uwejs s)eIS

NN

/1

_\,
I

0 €ns

AR

Julldje ajelg

!

! \ !
0Znsy |1Ins

Juwje 9)els

! !

0ins

Juweje a)elg

|

uweie 9)e1s

!

e G S wm W Swm Ws MM DS WhE mm W Wue Eem sww G ew
| A—

/)

;

/

=

[

L ¥NS

LN

L

7

_F)_L\“h_o sjels|
!

L
\ KcEm_m o1e1e

!

Juwae a)eIg

7

L7 1

0 vnNS[|1 °ENS

/

N

\ juwisis ayelg

!

a\ﬁ

0 Ens’ |17zns

K

Juweje a)els

\ I

L 71

02Zns| |1 ins

Juwsaje 9)e)s

q\a

0 ins

Juwsje a1e1S

Juwoje 918l

US 9,053,292 B2

Sheet 22 of 25

Jun. 9, 2015

U.S. Patent

(pJuoo) g1 ‘Ol

0

;

B \ﬁu
i

Juweje aelg

!

JUW9e 9)B)g

Juwa|9 9je)s

_
_
!
uweje ayes

}79nS
! t
0vnsy | L ENS
1 i
0°€Nsy” |17zns

! \ 1
0Znsy |1 Ins

uwsie ayels

!

Juwis|a ae1g

i !

0ins

TNETEE T

!

Juwsje a)e)s

!

\F

L
™

i \m
L ¥NS |

ST

y
/

Juwie|o aels

!

Juwia|e ajels

i

S

juulsis a1

0 vNS

L/

I

/

.

uwsje aes

i

0 €Nns

sy

I

i

uwsje 9)eg

0¢ns

Y

L Ins

Juweje sjels

I

0Ins

1

Juwsje a)eIg

i

Juwoje s1es

US 9,053,292 B2

Sheet 23 of 25

Jun. 9, 2015

U.S. Patent

1apodaq

0l=1 = ==
ﬂ p+0L L n?ﬁ_-L PE+0L= L PP+OL=L ﬁ um:ﬁuL BSTL Eé.ﬁL
0s'sd 1S'ed ¢s'ed es'ed| ™ | #8'ed 58'ed 9s'ed i8'td
0l=1 = =
M P+0L=1 ﬂ u?E-L u?EuL Ph+0L=1 * BSTL 8+ﬁuL E+EHL
08'ed|™ " \|8'2d Z8'zd £€8%d— 1 #s'zd §S‘ed 98'2d iS'2d
01=1 = =
ﬁ p+0L L u?E-L u?EuL PR+0L=l ﬁ B;TL B,éuL Eé.iL
0S‘id 1S'ld z8'Ld ES'ld|T ! v8'Ld ss‘ld 9S'Ld 18'Ld
0L=L = .
ﬁ P+OL .F_ 3+E-L u?EuL PP+0L=1 ~ ufEuL 8+EnL E._.ﬁuL
0s‘od Is‘cd zs'od es'od| ™| 5'0d ss‘0d 9s'0d s'od

U.S. Patent Jun. 9, 2015 Sheet 24 of 25 US 9,053,292 B2

To +3d Ty +2d To +d To
f31.... 2af23. .. 6|15

4

2:1 2:1 2:1 \ 2
MUX \ MUX /4\\ Loz /14 ‘\ X /l :
A o h— @ M 5,4,3(Zero override)

T o W - - e e o m -y g -

N ——— o ————— 2 - -
9:1 \ 91 /N o1 ey L 5,4,3,21,0
- . }i]
\ MUX MUK T MUK R MUX /]'ﬂ

FIG. 21

U.S. Patent Jun. 9, 2015 Sheet 25 of 25 US 9,053,292 B2

} !

Multiplier

A 4

R. Shifter

Adder

v

A

L. Shifter
l FP MAC

FIG. 22

US 9,053,292 B2

1
PROCESSOR EXECUTING SUPER
INSTRUCTION MATRIX WITH REGISTER
FILE CONFIGURABLE FOR SINGLE OR
MULTIPLE THREADS OPERATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/296,919 filed Dec. 19, 2008, which is a 371
filing of International Patent Application No. PCT?US2007/
066536 filed Apr. 12, 2007, which claims priority to U.S.
Provisional Patent No. 60/792,219 filed Apr. 14, 2006 and
U.S. Provisional Patent Application Nos. 60/791,782 and
60/791,649 filed Apr. 12, 2006, the contents of which are
incorporated herein by reference.

BACKGROUND

The invention relates generally to computer architectures.
More particularly, the invention relates to a computer archi-
tecture to process matrix instructions specifying parallel and
dependent operations.

Improving computer architecture performance is a difficult
task. Improvements have been sought through frequency
scaling, Single Instruction Multiple Data (SIMD), Very Long
Instruction Word (VLIW), multi-threading and multiple pro-
cessor techniques. These approaches mainly target improve-
ments in the throughput of program execution. Many of the
techniques require software to explicitly unveil parallelism.
In contrast, frequency scaling improves both throughput and
latency without requiring software explicit annotation of par-
allelism. Recently, frequency scaling hit a power wall so
improvements through frequency scaling are difficult. Thus,
it is difficult to increase throughput unless massive explicit
software parallelization is expressed.

In view of the foregoing, it would be desirable to improve
computer architecture performance without reliance upon
frequency scaling and massive explicit software paralleliza-
tion.

SUMMARY

A matrix of execution blocks form a set of rows and col-
umns. The rows support parallel execution of instructions and
the columns support execution of dependent instructions. The
matrix of execution blocks process a single matrix of instruc-
tions specifying parallel and dependent instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is more fully appreciated in connection with
the following detailed description taken in conjunction with
the accompanying drawings, in which:

FIG. 11illustrates an architecture to support the execution of
parallel and dependent instructions in accordance with an
embodiment of the invention.

FIG. 2A illustrates the mapping of serial instructions to
produce parallel and dependent operations in an execution
matrix of the invention.

FIG. 2B illustrates the mapping of operations to an execu-
tion matrix of the invention.

FIG. 3 illustrates a row of execution blocks that may be
utilized in accordance with an embodiment of the invention.

FIG. 4A illustrates execution blocks and supporting regis-
ter files and buffers that may be utilized in accordance with an
embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4B illustrates a register file configured in accordance
with an embodiment of the invention.

FIG. 5 illustrates various data configurations that may be
utilized with a buffer of the invention.

FIG. 6 illustrates a pipeline that may be utilized in accor-
dance with an embodiment of the invention.

FIG. 7 illustrates matrix instruction processing in accor-
dance with an embodiment of the invention.

FIG. 8 illustrates the mapping of operations to an execution
block of the invention.

FIG. 9 illustrates a matrix buffer utilized in accordance
with an embodiment of the invention.

FIG. 10A illustrates a universal unit to implement opera-
tions of the invention.

FIG. 10B illustrates a one bit cell of a carry look-ahead
adder used in the 4-bit adder in FIG. 10A.

FIG. 11 illustrates a Time-Lag Sliced Architecture (TLSA)
unit configured in accordance with an embodiment of the
invention.

FIG. 12 illustrates multiple TLSA units in a staggered
configuration in accordance with an embodiment of the
invention.

FIG. 13 illustrates a prior art multiplication technique.

FIG. 14 illustrates a time-lag multiplication technique uti-
lized in accordance with an embodiment of the invention.

FIG. 15 illustrates prior art Booth encoded multiplication.

FIG. 16 illustrates logic to implement the Booth encoded
multiplication of FIG. 15.

FIG. 17 illustrates Booth encoded multiplication in accor-
dance with an embodiment of the invention.

FIG. 18 illustrates logic to implement the Booth encoded
multiplication of FIG. 17.

FIG. 19 illustrates a memory/register file data block con-
figured in accordance with an embodiment of the invention.

FIG. 20 illustrates a time slice memory configured in
accordance with an embodiment of the invention.

FIG. 21 illustrates a TLSA architecture with a permute/
shift unit configured in accordance with an embodiment of
the invention.

FIG. 22 illustrates a floating point multiply accumulate unit
configured in accordance with an embodiment of the inven-
tion.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DETAILED DESCRIPTION OF THE INVENTION

Itis highly beneficial to allow software that is not explicitly
parallelized to execute on single processor hardware that is
capable of processing massive numbers of instructions in a
short latency pipeline. To give a current perspective on cur-
rent solutions; super scalar processors can practically process
4-5 instructions in a cycle at peak instants, which is similar to
what a good VLIW compiler can achieve at peak instants. It is
well recognized that scaling super scalar processors to sched-
ule 10’s of instructions in a single cycle/instant is not practi-
cally achievable. Similarly, compliers that try to parallelize
general programs for VLIW architectures with 10’s of slots
end up leaving a lot of those slots unfilled.

The invention provides architecture and processor imple-
mentations enabling massive parallelism allowing large num-
ber of instructions is to be fetched, scheduled, decoded, and
executed in a short pipeline, achieving an impressive
improvement in the throughput of execution, while maintain-
ing a much optimized latency of operations in single proces-
sor pipeline with efficient timing, power, area and routing.

US 9,053,292 B2

3

In this new architecture, named Ultra Large Instruction
Matrix (ULIM), fixed size instruction matrix templates are
scheduled to be executed in the hardware as a matrix of
parallel and dependent groups of instructions. In contrast to
VLIW where only parallel instructions are scheduled using
the Very Long Instruction width template, the template of the
ULIM architecture encapsulates a group of instructions that
have both parallel and dependent instructions. This can be
viewed as a 2 dimensional template matrix where parallel
instructions are allocated horizontally while dependent
instructions are allocated only vertically. This template is sent
as one instruction matrix to the execution hardware, where
each execution block processes an instruction matrix.

FIG. 1 illustrates such a template where if an instruction is
put in slot 101 then another instruction that can execute in
parallel to it can be put in any of the parallel slots 1 to N in that
same row. However, an instruction that depends on the one
placed at slot 101 cannot be placed in the same row and has to
be placed on a following row (e.g., parallel slot 0 of serial slot
1)102. The slot noted by 102 canreceive as an input either the
result produced by 101 or an external input operand or a
combination of both. The execution model of such an instruc-
tion template is that instructions at any row will execute
before those in the next row.

The ULIM instructions’ grouping can be scheduled stati-
cally by a ULIM compiler or dynamically by a ULIM hard-
ware composition unit. The significance of this architecture is
clear if it is compared to a traditional architecture. In a tradi-
tional architecture, one row of N.sub.1 parallel instructions
can be put in a template, such as VLIW or SIMD template.
This means each cycle, N.sub.1 instructions can be executed
(all have to be insured to be parallel which is a serious con-
straint for a large N). On the other hand, the ULIM architec-
ture can execute N.sub.1*N.sub.2 instructions each cycle by
pipelining execution at each row boundary. In spite of execut-
ing N.sub.1*N.sub.2 instructions each cycle, the ULIM archi-
tecture imposes only the same constraint of insuring that
N.sub.1 instructions execute in parallel.

The instruction matrix template can be constructed by the
programmer or by a compiler/hardware formatter where nei-
ther of them need to be constrained by finding only parallel
instructions to schedule every cycle. Available parallel
instructions can be picked and placed horizontally in rows.
The parallel instructions can be augmented by dependent
instructions that are placed in subsequent rows. A matrix can
execute in a single or multiple cycles. A matrix can localize
storage of operands near the execution hardware to optimize
interconnect complexity, area, speed and power.

The invention is more fully appreciated in connection with
the example of FIG. 2A. FIG. 2A illustrates an example of an
instruction sequence 200 presented by a single serial program
flow. The figure also shows how the instructions are grouped
to form a single instruction matrix with both serial and par-
allel slots utilized in the matrix template. The matrix template
is applied to an execution block 201. The execution block 201
includes a multiplication unit 202, a floating point add unit
204, a load unit 206, a multiple accumulate (MAC) unit 208,
a logic unit (e.g., an ALU) 210, and another logic unit 212.

Thus, an instruction matrix refers to an instruction group
template with parallel and serial instructions. An execution
block refers to a group of execution units that execute an
instruction matrix. Execution units are individual computa-
tion units (e.g., both complex and simple units) within an
execution block.

Straight arrows, such as 214, indicate a dependency
between instructions. The mapping can be done by the com-
piler, by the front end hardware or by a run time environment.

20

30

40

45

4

FIG. 2A also depicts a formatted operation map showing the
relative physical location of the instructions in the matrix as
they will be executed on the corresponding hardware loca-
tions with parallel and serial dependency indicators.

As shown in FIG. 2A, the single stream program is refor-
mulated into a matrix of instructions that statically deter-
mines serial execution, as well as instruction parallelism. For
example, in the serial single program flow in FIG. 2A, the last
instruction uses R3 as a source while the fourth instruction
writes R3 as a result. This is mapped in the matrix template by
placing the last instruction in a row that is subsequent to the
row that the fourth instruction occupies. Line 214 illustrates
this dependency.

The encoded instructions and their sources and destina-
tions for the template shown in FIG. 2 A are illustrated in F1G.
2b, where the instruction matrix template includes the opcode
for the instructions and specifies the operands and result
registers. Sources and destinations are separate from
opcodes. This simplifies the decoding stage, the dependency
resolution stage, and the register/memory read stage.

Several instruction matrices can be issued simultaneously,
as shown in FIG. 3. FIG. 3 illustrates the instruction matrix
operation map of 201, represented here as 301, along with
alternately configured instruction matrices operation maps
300, 302 and 304. Simultaneous issuance may be imple-
mented using one of the following models:

1—MIMD or SIMD: Software/compiler glues multiple
matrices into a super matrix.

2—Threaded model: Each matrix belongs to a separate
software or hardware thread.

3—Dynamic execution: Matrices from a single stream can
be dynamically issued by the hardware if no dependency
exists between them.

The instruction matrix templates represented by their
operational maps in FIG. 3 are executed on a hardware that
maps those instruction slots into execution units (inside the
execution blocks) with a one to one correspondence. Granu-
larity of the matrix allows forming a baseline matrix and
combining those matrices to form a super matrix. This is
illustrated in FIG. 4A, where 4 base-line instruction matrices
execute in parallel on four execution blocks 301, 300, 302,
and 304. Each execution block consists of 2 rows of complex
units. The first row has 3 complex units (e.g., 402, 404, and
406) and another row with 3 complex units (e.g., 408, 410,
and 412). Each complex unit can be operated to compute
complex operations like a multiply, floating point add, or
multiply-accumulate operations. Thus, for example, complex
unit 402 may correspond to 202 of FIG. 2, complex unit 404
may correspond to 204 of FIG. 2, etc.

A complex unit can be operated to compute up to 4 simple
operations, such as ALU operations. Such a complex unit is
thus shown to have multiple operands and multiple outputs.
The units can be arranged to compute parallel operations or be
sequenced to perform dependent operations. Each of the
base-line instruction matrices can be run independent of other
matrices in a threaded mode or a number of them can be
combined in a group that can be run in the same cycle as a
super instruction matrix composing a MIMD architecture.
The whole matrix can be executed in one cycle or could be
pipelined over multiple cycles.

As an example of operating the execution engine shown in
FIG. 4A to execute the ULIM instruction template of FIG. 3,
instruction MAC 208 is executed in complex unit 408, while
the pair of simple Logical and ALU operations 210 are
executed in a pair of units of 408. FIG. 4A illustrates the
similarities and differences with a VLIW architecture. If in
FIG. 4A we use the top 3 slots (402, 404, 406) to execute 3

US 9,053,292 B2

5

parallel instructions, then these 3 slots in the ULIM template
would resemble an equivalent VLIW instruction. Using the
next row of simple units (408, 410, 412) to execute 3 more
parallel instructions will mean that we are executing another
equivalent of a VLIW that depends on the previous one. Thus,
the ULIM architecture can be viewed as executing in space
and with a fixed lag of time a fixed number of multiple VLIW
instructions that are dependent on each other. In addition, the
architecture allows executing a single complex instruction or
multiple simple instructions in one single slot, which is not
allowed in VLIW templates.

The 4 ULIM matrices indicated by operation maps 301,
300, 302, and 304 in FIG. 3 can be executed on the hardware
in FIG. 4A. This may implemented in one of 3 execution
modes: either by being grouped together by the compiler/
programmer to form a MIMD super instruction matrix, or
each matrix can be executed independently in a threaded
mode where separate threads execute simultaneously on each
of'the 4 hardware sections (301, 300, 302, and 304). The last
execution mode possible is the ability to dynamically execute
4 different instruction matrices from a single thread using a
hardware dependency check to insure no dependency exists
between those different matrices that execute simultaneously
on the 4 different hardware sections in FIG. 4A.

The register files 420 in FIG. 4A may be alternately con-
figured depending upon the execution mode. In one mode, the
register files are viewed as either an MIMD sectioned register
file serving a MIMD width of 4 sections or they serve as 4
individual register files, each serving a separate thread. The
register files can also support a dynamic execution mode
where the 4 sections are one unified register file where data
written to any register in a particular section is accessible by
all units in the other sections. Switching between those modes
can be seamless as different executing modes can alternate
between individual thread baseline instruction matrix and
MIMD super instruction matrix threads.

Each single instruction matrix is a mix of parallel and
dependent instructions. Also, each individual instruction can
be a scalar or SIMD instruction. At the finest granularity, the
instruction can resemble variable data-width SIMD operating
on multiple bytes/words or a single scalar entity.

In a multithread execution mode, each register file and its
execution unit that executes a thread is totally independent of
other register files and their threads. This is similar to each
thread having its own register state. However, dependency
between those threads can be specified. Fach matrix that
belongs to a thread will execute in the execution unit of that
thread’s register file. If only one thread or non-threaded single
program is executed on the hardware in FIG. 4A, then the
following method is used to allow parallel matrices belonging
to that single thread/program to be able to access the results
written into the registers in the other sections. The way this is
done is by allowing any matrix writing results into any one of
the 4 register file sections to generate copies of those registers
in the other register file sections. Physically this is done by
extending the write ports of each section into the remaining
sections. However, this is not scalable, as we cannot build an
efficient register file with each memory cell having as many as
4 times the write ports as needed for one section alone. We
present a mechanism where the register file is built such that
it will not be impacted with such single thread register-broad-
cast extension. Such a mechanism is shown in FIG. 4B.

FIG. 4B shows one section of the register file consisting of
24 registers where a matrix that belongs to a single thread is
storing the results of execution in that section’s 24 entry
register file. At the same time, 3 other parallel matrices are

25

30

40

45

55

6

executing on the other 3 sections of FIG. 4A and the results of
their execution are broadcasted to this register file section.

The way that the write ports are configured to enable single
thread register broadcast is by limiting the results of each
matrix to non-overlapping 6 register groups. This is imple-
mented by having sectioned write ports where each write port
writes into a separate group of registers 430. The write ports
440 coming from other sections will write into different non-
overlapping groups of registers.

Ifthis is a threaded mode or MIMD mode, then all the write
ports that go to those non-overlapping groups are used by the
results of this section to utilize and write to the full 24 entry
register file and no broadcasting is done since other sections
have independent code that uses independent registers (which
means local section registers will need all registers to use). On
the other hand, if a single thread is in use, then all the sections
are cooperating on doing useful work for this single thread.
The total registers in this case will be only 24, thus registers
across the remaining sections (24 entries*3 sections) can be
used to hold copies among each other. This group assignment
of'the registers can be assigned by the compiler using analysis
to determine if matrices could be parallelized and thus assign
those matrices that have a chance of executing in parallel
non-overlapping group of registers.

Even though the results are being written from all 4 sec-
tions, each memory cell in the register file only has ports to
support one section. In traditional register files it has to have
support for 4 sections, a four fold increase as illustrated in the
following example.

The data parallelism in the ULIM is implemented in these
architectures on top of the base line format of the ULIM. This
is done by allowing each instruction in the ULIM template to
be a SIMD/MIMD instruction. In the previous figure each
parallel slot can support an internal replicated SIMD struc-
ture, while the MIMD is supported by the different parallel/
serial slots.

The memory/register or matrix buffer being accessed by an
instruction can be viewed differently depending on the
intended access nature. For example, the data matrix could be
viewed as MIMD of wide data elements, SIMD of small data
elements or MIMD of mixed data width SIMD instructions.

In FIG. 5 there are 2 views of the memory/register matrix
buffer layout of the data. The one on the right represents
orthogonal data elements in each row and column. This sup-
ports different combination of MIMD/SIMD data. The view
on the left represents different elements on each position of
any row, but the column represents the remaining bits of a
larger data size element. For example, the view on the right
can represent 4 MIMD instructions each operating on 4 dif-
ferent SIMD bytes, where each is a byte of parallel data
elements. While the one on the left represents 4 MIMD
instructions, where each of these instructions operates on an
element of 32-bits laid out vertically (actual physical layout
will differ from the logical representation shown). Moreover,
if the view is a MIMD view, then all belong to one single
MIMD register of 4 sections, but if the view is non-MIMD
view, then those registers are 4 independent registers laid out
vertically.

The significance of this memory and register file view and
its corresponding execution mode is that it enables the execu-
tion unit to morph to execute a wide MIMD/SIMD instruction
(glue all register sections to form 4-way MIMD/SIMD), but at
the same time the 4 register file sections and corresponding
execution units attached can execute as 4 independent units
acting on 4 different scalar registers, allowing single and
multiple threaded execution within the execution unit at the
lowest level of granularity.

US 9,053,292 B2

7

The ULIM architecture has fixed size instruction templates
similarto VLIW or MIMD templates. In contrast to VLIW or
MIMD templates, the ULIM templates allow one to specify
both parallel instructions as well as dependent instructions. It
follows the same Von Neumann architecture of instructions
writing into registers and dependency of instructions within a
matrix communicated through register name dependency.
One more noteworthy aspect of the ULIM architecture is that
each instruction in the matrix has a fixed predetermined loca-
tion in the matrix and executes in a fixed timing relative to
other instructions in the matrix. The width of the ULIM
matrix resembles the width of a corresponding VLIW tem-
plate. Actually, it is always possible to transform serial flow of
dependent VLIW instructions into a ULIM template by plac-
ing one VLIW instruction at one row of the horizontal rows of
the ULIM template. It is not possible to resemble all possible
ULIM templates using a flows of VLLIW instructions because
the ULIM template can include in the same row one complex
instruction in one slot and multiple simple instructions in the
horizontally adjacent slot.

The advantages of utilizing the matrix architecture com-
posing a matrix of instructions as opposed to executing indi-
vidual instructions as traditional architectures do are numer-
ous. The following discussion illustrates mechanisms
enabling and utilizing the invention’s instruction matrix and
execution block architecture to build and implement a mas-
sively-parallel single processor pipeline.

FIG. 6 illustrates a possible processor pipeline that takes
advantage of a ULIM architecture. The invention utilizes a
mechanism to simplify the fetch stage 600, branch resolution
and decoding stage 608. The fetch unit 600 steps forward
while fetching the code on an instruction matrix basis as
opposed to an instruction basis. The program counter for such
an architecture is incremented by the size of the matrix
instead of being incremented by the instruction size. This
means that in each cycle a large number of instructions are
fetched. To be able to do that, the ULIM matrix will not allow
a branch to exist within the ULIM matrix, but branches can
exist between ULIM matrices. Branch resolution is done on 2
levels. Within the ULIM matrix, the branches are replaced
with conditional execution, conditional moves and predic-
tion. Across matrices, the branches are handled by path pre-
diction and branch coloring. This allows large numbers of
instructions grouped into matrices to be moved forward
across the pipeline fetch and branch resolution stages.

Executing dependent instructions along side parallel
instructions within a single matrix relieves the compiler from
the difficulty of constructing all-parallel instructions slot
code. It also simplifies the data dependence checking in the
score board hardware 602 dispatch unit 604 or hardware
scheduling unit. This is achieved by using the matrix number
as a utility to enforce score boarding and dependency main-
tenance between matrices as opposed to using individual
registers or individual instructions. In the example of FIG. 7,
the score board characterizes the dependency precedence of
matrix 8 by only referencing matrix numbers 2, 4 and 5,
which means matrix 8 needs to read data results from those
matrices. The score board dependency checking does not
need to reference the individual register or instruction infor-
mation to maintain the dependency score boarding. The
matrix number carries that information and is enough to
maintain correctness of dependency checking Instructions
within a matrix that depend on other matrices can be issued
when those matrices are executed. The whole matrix is pre-
vented from being dispatched when the matrices it depends
on stalls (e.g., for a cache miss). In one embodiment of the
ULIM pipeline implementation, the decode stage 608 is

10

20

25

30

35

40

45

50

55

60

65

8

delayed until the stage just before execution, and it is done in
parallel with the register read stage 606.

FIG. 8 illustrates one implementation for encoding the
instruction template of the ULIM architecture. The key is the
encoding and organization of the operands (results and
sources registers). The registers specifying instruction results
and source operands are specified in a separate section of the
ULIM template regardless of the opcode of the instructions
and regardless of the fact that the instructions are complex
operations or pairs of simple instructions. This matrix format
that lists the sources and destinations in an explicit section of
the matrix enables the source and destination registers to be
extracted independent of the decoding of instructions within
the matrix. It will thus be able to implement a delayed decode
stage, where actual decoding of the individual instruction
opcodes is delayed until just prior to the execution stage and
will proceed in parallel with register read to enable execution
onthe next cycle. It also simplifies dependency resolution and
scoreboard implementation.

If a slot includes a complex instruction, such as “Multiply
accumulate” (MAC) then it requires 4 sources and writes
back two results. If the same slot includes two simple instruc-
tions, such as a Logic and an ALU, then each requires 2
sources and writes back one result, which both combined
requires 4 sources and generates two results. This makes the
number of sources and results independent of the type of
operation.

Processor execution hardware as shown in FIG. 4A
includes register read and write mechanisms where a matrix
operand buffer can assemble the required register sources and
destinations based on physical location of where each source
will execute on the respected hardware element of the matrix.
This reduces the number of read and write ports and the
bandwidth requirement on the register file. Using this char-
acteristic of the matrix architecture, the bypassing mecha-
nism is simplified where buffering the sources and/or the
destinations in a matrix buffer that is close by or attached to
each execution unit can provide shorter access time and larger
source and results port bandwidth than a traditional register
file, especially in the case of large size register file that needs
to support so many individual execution units.

FIG. 9 illustrates the concept of a matrix buffer of the
invention. The figure shows the instruction matrix operand
buffer 900 connected to the execution units 902. In this
example, the instruction matrix operand buffer 900 buffers
sources and destinations for 3 different matrices. Particularly
important is the fact that write ports 904 are architected such
that each write port writes to different memory cells. This
means the matrix operand buffer memory cells are single
ported even though there are 6 results that are written at the
same time, which is equivalent to a traditional register file that
is 6-way ported. Moreover, each write port has a fan out (cells
that it needs to drive) equal to the number of matrices in the
matrix buffer (only 3 in this example). These features have a
lot of advantages in area, power and access speed, making this
buffer design very scalable and attractive for high bandwidth
high speed register file alternatives.

The following method describes how the registers are writ-
ten and accessed from the matrix operand buffer. Each matrix
is allocated to any available matrix space in the matrix buffer
just in time or a short time before the matrix is ready for
execution. Remote sources (e.g., sources that are not in other
matrices storage within this matrix buffer) that the matrix
needs to be able to start executing can be temporarily staged
in this matrix storage.

After executing the matrix, results are written into the area
allocated for this matrix storage (in one of the 3 matrix loca-

US 9,053,292 B2

9

tions in the matrix buffer of FIG. 9). Each result is written into
the corresponding location accessed by that result write port
regardless of the result register number. This location along
with the matrix location is communicated to the consuming
matrices similar to the score board mechanism shown in FIG.
7, such that each matrix that depends on this matrix will
annotate its register sources with the location of the matrix
that those sources come from and location of each of the
sources within the matrix. The result location within the
matrix can be communicated at execution time by the execu-
tion hardware or can be embedded in the matrix instruction
template alongside the source register number by the software
since the matrix template is fixed at compile time.

The basic idea is to build a scalable design of sources and
result buffers alongside register files where those buffers are
connected to the execution units to allow higher bandwidth
and speed by holding data temporary in a matrix location-
based identification method establishing an intermediate
medium between regular register files and execution units.
Values in those matrix buffers can be accessed using the
matrix location and the location of the source inside the
matrix. For example, register 5 written by matrix 20 can be
accessed by recording where that matrix is allocated in the
matrix buffer and indexing that matrix’s own storage by the
entry number that the register 5 result physically occupies
inside that matrix. However, after the matrix is de-allocated
from the matrix buffer, then all the entries holding register
values within the matrix will be written back into the actual
register file and accessed by the register number from that
moment onwards. The same location-based identification and
access method discussed earlier for a register file using a
matrix data buffer can be applied to memory accesses using a
memory buffer cache.

The matrix architecture can be easily constructed by a
compiler if the underlying hardware is uniform and repli-
cated. It also allows for greater efficiency in utilizing the
power and silicon area. Here we introduce the concept of a
universal unit that is constructed from basic building ele-
ments, such as small adders, logical gates, multiplexers, and
booth cells.

The architecture of the universal unit allows it to perform
all functions/operations inside every single universal unit.
This means each universal unit is capable of performing addi-
tion, multiplication, shift, permute, etc. The way it is able to
perform such universal functionality is its composition out of
basic building elements that are used to perform the simple
ALU operations. On the other hand, those simple elements
are cascaded to perform the complex operations. It also can
process floating point and integer data. The universal unit
concept is facilitated by the ideas described above, but it
achieves an important advantage by simplifying the schedul-
ing and utilizing the machine throughput to the maximum. In
regular architectures, a separate unit is used to perform each
operation or function. They share the same port of execution.
Thus, when one unit is used, the rest are not utilized. More-
over, the latency in traditional architectures varies among
them making it difficult for the scheduler to schedule them. In
contrast, in this universal unit, latency is unified for the whole
unit and the scheduler sees a symmetric instantiation of the
universal unit.

FIG. 10A shows part of this universal unit. Each universal
unit can perform different execution units’ functions, such as
a multiplier, adder, shifter, permuter, etc. This embodiment
shows the structure with carry save adders and/or generic
adders 1000. The Unit is composed of basic constructs, each
one with 4 rows of adders (could be more or less adders)
capable of adding 8 inputs in parallel (4 parallel/serial add

10

15

20

25

30

35

40

45

50

55

60

65

10

operations). These adders are then structured in groups. Each
adder in a row can be either connected to the same location
adder in the row below (to perform serial ALU operation) or
be connected to the adder to its right in the row below to
perform a multiply operation. The operations can be C¥B+A,
or A OP B, in each row forming 4 parallel/serial ALU opera-
tions. In addition, it is possible for these groups of adders to
have different data sizes. This structure of adders allows fora
tree to perform multiple operand addition, multiplication,
multiply accumulate, sum of difference, shifting and rotating.
Additionally, multiplexers (not shown in the figure) will
align/permute/shift the input or intermediate outputs to obtain
the required operation, including shift and permute opera-
tions. Booth cells/bit multiply cells 1002 are added to the
adders to enable multiplication. Other specific logic, state,
memory, or LUT elements are added to provide expanded
functionalities.

The universal unit allows the permute/shift unit to be
implemented using the same structure that is used to perform
the multiply operation or the structure that is used to do the
floating point add or floating point multiply accumulate. This
advantage allows less routes/area to implement a permute/
shift logic. The way the shift or rotate is performed in a
multiply structure is by performing a multiplication by
2.sup.x where X is the shift count. Performing left shift, right
shift or rotate is done by selecting the upper product of the
multiply result or lower part or performing the OR function
between lower and upper multiply result, respectively.

Each of the elements compose a group of bits using a basic
2-input adder structure. Carry-save-adders can also be built
with logic and MUXES. For example, to build 32*32 ele-
ments, the basic groups can be constructed of 8 bits or 4 bits
of basic adders and MUXES, and be able to perform logic
functions using the modified carry look ahead adder cell
internal logic gates.

FIG. 10B shows the modified basic one bit cell of a carry
look-ahead adder used in the 4-bit adder in FIG. 10A to
produce either an adder output or a selected logic output.
Modification is shown by connections 1010 and two 4:1
multiplexers 1012 that are not in the critical path of the adder.
The original adder bit structure (marked as 1014) includes
carry look ahead and sum logic. This figure is for logical
representation, actual circuit may differ.

The 4-bit (or 8-bits) groups facilitate the execution of vari-
ous size SIMD widths as well as 16-bit operations. By the
same concept, those 16-bit tiles can be cascaded for larger
width data operations, such as 64-bit operations, while still
facilitating 8-bit, 16-bit and 32-bit SIMD operations of addi-
tion and multiple operand addition, shifting, rotating and
multiplication.

The basic concept behind this organization is to be able to
execute a combination of parallel and serial instructions on
the same structure. For example, the first row of constructs
can execute a single 32-bit AL U that can be followed by either
a dependent or independent ALU on the 2.sub.nd row and so
on. The 4 rows together can execute up to four 32-bit ALU
serial/parallel operations or a single 32-bit multiply opera-
tion. It can also perform partial width SIMD operations on the
sub matrices. The instructions and operands scheduled on this
universal unit come as one group, particularly within the
matrix data and instructions section.

The ability to pipeline instructions within one cycle is
possible using the instruction matrix architecture because we
pipeline the dependent instructions to be scheduled within the
same cycle or on the following cycle depending on the
required frequency. There are multiple ways to take advan-
tage of the ULIM architectures. The system allows for Ultra

US 9,053,292 B2

11

Large Instruction Matrix scheduling. Parallel instructions as
well as dependent instructions are scheduled as a matrix (this
is in contrast to VLIW where only parallel instructions can be
scheduled). Each instruction or dependent instruction in this
matrix can be scalar or SIMD.

The invention may be implemented in any number of ways.
For example, multiple dependent instructions may be staged
within a clock cycle. In this embodiment of the invention,
multiple dependent and parallel instructions can be staged
within one clock cycle. Multiple dependent instructions can
start within one cycle; this reduces the optimum critical path
of the program execution. Multiple dependent instructions
may be pipelined with state elements, separating each basic
operation in a unit from the following operation. This
increases the rate of pipeline execution. However, the power
of the design will increase because of clock speed and extra
state elements. The state elements may stay constant, but the
rate of data pumped through the design increases using wave
pipelining.

The invention also includes a Time-Lag Sliced Architec-
ture (TLSA) that accelerates the latency of dependent instruc-
tions. The basic idea behind the time lagged sliced architec-
ture is that an operation produces its result digit slice by digit
slice. Each slice is produced earlier than the next slice with a
time lag between slices. Once the first slice is produced, the
next computation can start execution and produce its own
slice. The sliced architecture described here is an overall
architecture that applies to computational units as well as
register files and memories. The architecture applies to all
arithmetic, shift, integer and floating point operations.

The TLSA is used to implement an entire system architec-
ture, including memory and computations. The digit slices
are not necessarily equal sized digits. The invention can oper-
ate with both operands arriving in a digit sliced manner. The
invention can implement a booth encoded multiplier, variable
shifters, permute engines, as well as floating point adders and
multipliers.

In designing execution units, the common methodology is
to synchronize the digits or bits of a digit of the output result
of an arithmetic/logical or shifter unit as one single output
result. This result is either latched into a storage element or
staged synchronously as one piece to a receiving element.
However, in this architecture fine grain execution is provided
with or without coarse grain synchronous execution. The
basic philosophy is to formulate the arithmetic or permute/
shift operation in such an organization of time lag logic slices
that are staged in time and/or space. The execution hardware
is connected in a time delay flow, where early slices execute
faster and produce slices of the output results faster, while
later slices need more time to execute and produce results in
adelay relative to earlier slices. It is worth mentioning that the
slices are done on fine granularity of bits/digits within even a
single execution unit, like an adder or permuter. This archi-
tecture can utilize such organization of digit/bit logic slices to
optimize logic timing critical paths and/or number of signal
routing paths and/or area for performing arithmetic, permute,
shift, etc. for both integer and/or floating point operations.
The slices can be of equal number of bits/digits or different
number of bits/digits. One particular advantage of this archi-
tecture is the ability to start executing dependent instructions
before all the output result slices of the source instruction are
finalized.

FIG. 11 illustrates a TLSA unit 1100 where data flows in
and out of slices 1102A-1102C. Each slice output has a lag
time delay (d) with respect to a previous slice. This time-lag
nature allows the unit to be pipelined such that state elements

15

20

25

30

35

40

45

50

55

60

65

12

of the different slices are not synchronized to one time, as is
typical for row/stage flip flops.

The architecture of FIG. 11 includes a basic adder stage
structure that computes basic computation tasks, such as mul-
tiple operand addition or sub-block multiplication. Those
computations are cascaded using staging elements 1104A-
1104C that are not part of the critical path of the basic task.
The staging elements can be adders, multiplexers, or logical
gates, depending upon the basic computational task that is
being sliced. The delay of these staging elements 1104 is
minimal and equal to time “d”, which is the delay between
each slice output and the next slice output.

The staging element is chosen to have the smallest delay
possible, as it also establishes the delay of the input operand
slices between themselves. The basic computational task in
FIG. 11 can use arbitrary levels of adders. Those adders can
be any type, e.g., binary or Carry Save Adders (CSA). The
architecture of FIG. 11 has the advantage of producing the
first slice of the result earlier than the final result. The first
slice is forwarded to subsequent operations.

FIG. 12 illustrates one embodiment of the invention where
multiple time-lag sliced units are staggered back to back. In
this embodiment, each diagonal slice represents an instruc-
tion computation unit divided into slices. Here each slice
starts execution at a lag in time with respect to a previous
slice. Each unit feeds a subsequent unit. This embodiment
shows four units back to back. The notation SU1.sub.—0
refers to Slice number 0 of unit number 1. SU4.sub.—7 refers
to Slice number 7 of unit number 4.

The architecture shown in FIG. 12 allows (if desired) for
multiple TLSA units to process data in a single cycle (or in
multiple cycles). A low slice of a first unit feeds the low slice
of a second unit and this in turn feeds the third and then the
third feeds the forth, etc. It is also important to notice that in
addition to the first slice of the first unit feeding the first slice
of'the second unit, it also feeds the second slice of its own unit
(the 1.sub.st unit). FIG. 12 illustrates the following concepts:

1—Sub-cycle/multi-cycle execution in TLSA [0092]
TLSA allows for the execution of the arithmetic/shift/logic
operations within one cycle. FIG. 12 illustrates this where 4
units are executed in one cycle, where each slice has a delayed
version of that clock cycle. By the same token, the pipelining
can be done at the output of each unit slice (instead of output
of 4) to increase the throughput and execute in multiple
cycles.

2—Asynchronous/Synchronous/Wave TLSA topologies
[0094] The TLSA can be designed in at least 3 different
topologies or combinations of those topologies: [0095]
A—Asynchronous: where slices’ inputs/outputs are commu-
nicating with each other within the cycle time without syn-
chronous state elements (e.g., flops). This allows for removal
of internal pipeline state elements and enables power friendly
slower clock domains. [0096] B—Synchronous: each slice is
clocked into a state element (Flop/Latch/domino, etc). This
allows for a higher clock throughput and pipelining rate.
[0097] C—Wave: in this topology, the data is fed into the unit
slice by slice, with the next input data coming at a rate that is
faster than the normal pipelining rate. Normal pipeline rate is
determined by the maximum time of logic paths between two
state elements. Wave pipeline is determined by minimum
time of logic paths between two state elements. One interest-
ing combination of topologies is Fine Grain Asynchronous-
Coarse Grain Synchronous (FGA-CGS). In this scheme, the
TLSA is implemented using time lag slices that are connected
asynchronously, where fine grain asynchronous execution is
provided with or without coarse grain synchronous execu-
tion. The basic philosophy is to formulate the arithmetic or

US 9,053,292 B2

13

permute/shift operation in such an organization of sliced
staged processing where the execution of the different slices
of the execution hardware is asynchronously connected in a
time delay flow where early slices have less inputs and
execute faster and produce their output results faster. Later
slices have more inputs, thus need more time to execute and
produce results in a delay relative to earlier slices. Each slice
is then clocked in a synchronous (or asynchronous) element
that has a time lag with respect to the previous slice.

FIG. 12 illustrates multiple TL.SA units staggered within
one cycle (4 back to back units within 1 clock), at the same
time the implementation illustrates a FGA-CGS implemen-
tation where unit slices communicate with each others in an
asynchronous manner (fine granularity asynchronous), while
each slice or back to back slices are synchronized at the output
to a state element clock. Each output of the slices may be
synchronized to a different clock (delayed version).

The TLSA architecture supports the Ultra Large Instruc-
tion Matrix (ULIM) architecture. In this TLSA embodiment,
a whole instruction group is scheduled where multiple paral-
lel and dependent instructions are scheduled on instantiation
of'the TLSA cluster shown above. Each unit can also support
SIMD data where duplicates of the data slices are instanti-
ated, but controlled by the same instruction excitation. Addi-
tionally, multiples of this assembled structure of SIMD Uni-
versal Units can be instantiated horizontally to implement a
MIMD architecture on top of a single unit. This way a whole
instruction template containing both parallel variations of
SIMD instructions and dependent instructions is scheduled in
a cycle.

FIG. 13 illustrates a traditional multiplication technique. In
particular, each B digitis multiplied against the set of A digits,
each of those digits must be available at the multiplication
execution unit at the initiation of multiplication. The results
are then summed. In contrast, with the present invention, as
shown in F1G. 14, operands arrive digit by digit. It can be seen
that each row of FIG. 14 represents a partial product of the
multiplication operation, but contains only current arriving
and previously arrived digits with respect to digit slice arrival
times.

To demonstrate how to build the logic structure that uses
Booth encoded multiplication to execute the time delay sliced
architecture, FIG. 15 illustrates a traditional Booth encoded
32-bit regular multiplier. The Booth encoder groups consecu-
tive multiplier bits together to generate a digit. This grouping
can reduce the maximum digit value that represents those bits
by considering the signed combinations of the 2 consecutive
digits in the number. For example, a 3-bit digit has a maxi-
mum value of 7, but by adding 1 to the value of the digit to its
left, then the digit 7 is now equivalent to —1. Using signed
representations of the digits allows values of those encoded
digits to reach a maximum value of ' of the original digit
values.

FIG. 16 implements the traditional logic structure of the
regular Booth multiplication shown in FIG. 15 using radix-4
digits. The selectors 1600A, 1600B choose which multiple of
the multiplicand to use out of the possible signed values
(0,1,-1,2,-2); the choice is determined by the Booth encod-
ing of the multiplier bits

FIGS. 17 and 18 show the new Booth encoded scheme and
the new TLSA logic structure to implement it. Notice that a
traditional multiplier has a continuous encoding of the stream
of bits, while the TLSA Booth encoder inserts 0’s in the
stream at the boundaries of the digit slices (in this example a
digit of 8 bits). The inserted zeros do not change regardless of
the sign of the multiplication (the last 2 bits represent the

sign).

10

15

20

25

30

35

40

45

50

55

60

14

FIG. 18 shows how to implement the new modified time-
lag sliced Booth encoded 32-bit multiplier. This implemen-
tation resembles the generic TLSA structure shown in FIG.
11. FIG. 18 implements sub-multiplication operations illus-
trated in FIG. 14 and FIG. 17.

The data parallelism in the TLSA is implemented in these
architectures on top of the base line format of the TLSA. This
is done by allowing each instruction in the TL.SA data format
of'the SIMD/MIMD to be organized in an orthogonal dimen-
sionto the TLSA slices. FIG. 19 shows a configuration where
amemory/register file data block is accessed by an instruction
that can be viewed differently depending on the intended
access nature. For example, the data block could be viewed as
MIMD of wide data elements, SIMD of small data elements,
MIMD of mixed data width SIMD instructions, etc. FIG. 19
illustrates an architecture to execute such combinations. The
slices within the unit can operate independently to perform
sub-operations. For example, each slice of 8 bits can perform
independent 8-bit multiplication, while the group of slices
that construct one 32-bit multiplier unit can also be operated
as a 4-way SIMD byte multiplier. On the other hand, the
group of units can be operated as a MIMD multiplier.

FIG. 20 illustrates a memory that is accessed in a sliced
manner. In traditional memory architectures, a single operand
(e.g., a 64-bit integer or floating point operand) is fetched as
awhole. After the address decoding is finished, all the bits are
read through the read port, which has to buffer the read enable
across the whole width of the operand size in memory. In the
TLSA architecture, after the decoding of the address occurs,
the data read and/or write occurs on a time lag model of a slice
following a previous slice with a time delay in between. The
benefit of this model is the fast memory response when it is
not necessary to decode and drive the whole data width at
once.

FIG. 21 illustrates a TLSA architecture with a permute/
shift unit that takes advantage of the time lag between data
slices. This advantage allows faster time to produce early
result slices and/or less routes/area to implement a permute/
shift logic. In FIG. 21, a right shifter is constructed to take the
time lag arrival of a 32-bit operand sliced in 8-bit digits. The
first slice (digit) of the 32-bit input arrives at time T.sub.0,
while the last slice arrives at time T.sub.0+3d, where d is one
MUX delay. Thebits (0 to 5) shown vertically on the right side
represent the shift count (maximum of 32, any value>32
generates an output of zero, basically all data is shifted out).
The execution starts with the arrival of the first low order digit
from the right side of the shifter. The unit then waits for the
next input digit to arrive. One of the digits is selected to the
lower digit position depending on the value of bit 3 of the shift
count, which will determine if the number will be shifted by
8 bits to the right. Then the next most significant digit arrives
and a choice is made to select this new digit or pass the data
that was selected in the upper multiplexer levels using the
next bit in the shift count and so on. Any multiplexer position
where the shift count will zero out that location will imple-
ment a zero override to its output. When the last digit arrives,
it goes through the least number of multiplexer levels and thus
will have a minimum delay “d” with respect to the previous
digit to enable a fast propagation of the last digit to the output.

A left shifter can be constructed with the structure of FIG.
21 mirrored about a vertical line where left slices have larger
stacks of multiplexers and right slices have smaller stacks of
multiplexers. The most significant digit passes through the
least number of multiplexer levels.

The sliced architecture universal unit can be a universal
unit similar to the one described in FIGS. 10A-10B. It uses the
same techniques of the sliced architecture (TLLSA) and/or fine

US 9,053,292 B2

15

grain asynchronous concepts. It performs all functions/opera-
tions inside every single universal unit. This means each
universal unit is capable of performing addition, multiplica-
tion, shift, permute, etc. The way it is able to perform this
universal functionality with low latency is the ability to pro-
cess the individual slices one at a time in a time lag fashion. It
also can process floating point and integer data. The universal
unit concept is facilitated by the ideas described above, but it
achieves an important advantage by simplifying the schedul-
ing and utilizing the machine throughput to the maximum. In
regular architectures, a separate unit is used to perform each
operation or function. They share the same port of execution.
Therefore, when one unit is used the rest is not utilized.
Moreover, the latency varies among them making it difficult
for the scheduler to schedule them. In contrast, in this univer-
sal unit, latency is unified for the whole unit and the scheduler
sees a symmetric instantiation of the universal unit.

Each universal unit can perform different execution units’
functions, such as a multiplier, adder, shifter, etc. In addition,
it is possible for these slices to have different data sizes. In this
particular illustration, each slice is larger in data width than
the previous slice. This structure of adders allows for a tree of
slices to perform multiple operand addition, multiplication,
multiply accumulate, sum of difference, etc. Multiplexers
(not shown in the figure) align/permute/shift the input or
intermediate outputs to obtain the required operation, includ-
ing shift and permute operation using the universal structure
of adders/multiplexers. Booth cells/bit multiply cells are
added to the adders to enable multiplication. Other specific
logic, state, memory, or LUT elements are added to provide
expanded functionalities.

The ULIM architecture can be time sliced using the dis-
closed TLSA techniques. One other way to construct a Uni-
versal unit is to configure it as a Floating point multiply
accumulate unit (MAC). The functions used in building this
unit are Multiplier, Right Shifter, Adder, and Left shifter.
Such a structure as disclosed in FIG. 22. A Universal unit can
utilize such a structure to perform any one or combinations of
those functions that construct the FP-MAC.

Each one of those functions has been described earlier and
therefore can be implemented individually as TLSA struc-
tures and then be combined to operate as a floating point
multiple accumulate TLSA structure. Such a structure can
also operate as a consecutive sliced AL U or multiply followed
by an ALU or shift, etc.

An embodiment of the present invention relates to a com-
puter storage product with a computer-readable medium hav-
ing computer code thereon for performing various computer-
implemented operations. The media and computer code may
be those specially designed and constructed for the purposes
of the present invention, or they may be of the kind well
known and available to those having skill in the computer
software arts. Examples of computer-readable media include,
but are not limited to: magnetic media such as hard disks,
floppy disks, and magnetic tape; optical media such as CD-
ROMs, DVDs and holographic devices; magneto-optical
media; and hardware devices that are specially configured to
store and execute program code, such as application-specific
integrated circuits (“ASICs”), programmable logic devices
(“PLDs”) and ROM and RAM devices. Examples of com-
puter code include machine code, such as produced by a
compiler, and files containing higher-level code that are
executed by a computer using an interpreter. For example, an
embodiment of the invention may be implemented using
Java, C++, or other object-oriented programming language
and development tools. Another embodiment of the invention

40

45

50

16

may be implemented in hardwired circuitry in place of, or in
combination with, machine-executable software instructions.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough understand-
ing of the invention. However, it will be apparent to one
skilled in the art that specific details are not required in order
to practice the invention. Thus, the foregoing descriptions of
specific embodiments of the invention are presented for pur-
poses of illustration and description. They are not intended to
be exhaustive or to limit the invention to the precise forms
disclosed; obviously, many modifications and variations are
possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the prin-
ciples of the invention and its practical applications, they
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It is
intended that the following claims and their equivalents
define the scope of the invention.

What is claimed is:
1. A processor, comprising:
a matrix of execution units including a first row of execu-
tion units and a second row of execution units, wherein
the first row of execution units operate in parallel and the
second row of execution units operate in parallel and in
dependency upon the first row of execution units;
a register file with multiple register segments to store
instruction matrices results for subsequent processing
by the matrix of execution units, wherein each instruc-
tion matrix of the instruction matrices includes a first
row of instructions executed in parallel by a sub-set of
execution units of the first row of execution units and a
second row of instructions executed by a sub-set of
execution units of the second row of execution units,
wherein the register file is configurable for different
execution modes, including:
the multiple register segments forming a single register
file where each register segment stores the sources
and results of a Multiple Instructions Multiple Data
(MIMD) super instruction matrix issuing four simul-
taneous instruction matrices where each individual
instruction within each of the four simultaneous
instruction matrices is a scalar or Single Instruction
Multiple Data (SIMD);

the multiple register segments forming individual inde-
pendent register files with individual register state to
support simultaneous processing of separate threads,
wherein each instruction matrix is associated with a
separate thread and a separate register file segment;
and

the multiple register segments forming a single thread
register file, wherein register segments are duplicated
in multiple segments of the register file to store the
results of simultaneously executed non-dependent
instruction matrices that are dynamically issued from
a single thread instruction sequence.

2. The processor of claim 1 wherein the instruction matri-
ces are formed by a run time system.

3. The processor of claim 1 wherein the instruction matri-
ces are formed by hardware.

4. The processor of claim 1 wherein the instruction matri-
ces are formed by a compiler.

5. The processor of claim 1 configured to process instruc-
tion matrix numbers to identify matrix dependencies and
enforce scoreboard dependence resolution between instruc-
tion matrices.

US 9,053,292 B2

17

6. The processor of claim 1 configured to access multiple
register segments of duplicate register files.

7. The processor of claim 1 configured to store instruction
matrix results in different register segments of duplicate reg-
ister files.

8. The processor of claim 1 configured to designate regis-
ters for instruction results and source operands of each
instruction matrix as a group.

9. The processor of claim 1 configured to read instruction
matrix operands using listed sources and destinations in fixed
locations of each instruction matrix regardless of opcode.

10. The processor of claim 9 configured to determine
dependency between instruction matrices based upon the
listed sources and destinations regardless of opcode.

11. The processor of claim 1 wherein the matrix of execu-
tion units supports floating point, integer, Single Instruction
Multiple Data (SIMD), and Multiple Instruction Multiple
Data (MIMD) operations.

10

15

18

12. The processor of claim 1 wherein the register file has a
hierarchy that supports parallel block writes without an
increase in the number of ports by associating each execution
block result with a matrix buffer storage entry.

13. The processor of claim 1 further comprising a sched-
uler that uses matrix numbers to track register references.

14. The processor of claim 13 wherein the location of a
matrix result is communicated to a consuming matrix to iden-
tify the location of source registers of the consuming matrix
among the multiple register segments.

15. The processor of claim 1 wherein subsets of execution
units form execution blocks, each configured to perform a
common set of operations.

16. The processor of claim 15 wherein each execution
block has the same processing latency.

17. The processor of claim 15 wherein each execution
block is a symmetric instantiation to a scheduler.

#* #* #* #* #*

